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ABSTRACT A novel, fast, and robust method for 3D eye pose tracking that leverages the anatomical
constancy of the human iris to improve accuracy and computational efficiency is proposed. Traditional pupil-
based methods suffer from limitations due to pupil size variability, decentering, and the need for complex
corrections for refraction through the corneal bulge. In contrast, the iris, due to its fixed size and direct
visibility, serves as a more reliable feature for precise eye pose estimation. Our method combines key
advantages of both model-based and regression-based approaches without requiring external glint-producing
light sources or high computational overheads associated with neural-network-based solutions. The iris is
used as the primary tracking feature, enabling robust detection even under partial occlusion and in users
wearing prescription eyewear. Exploiting the consistent geometry of the iris, we estimate gaze direction and
3D eye position with high precision. Unlike existing methods, the proposed approach minimizes reliance on
pupil measurements, employing the pupil's high contrast only to augment iris detection. This strategy ensures
robustness in real-world scenarios, including varying illumination and stray light/glints/distortions introduced
by corrective eyewear. Experimental results show that the method achieves low computational cost while

maintaining state-of-the-art performance.

INDEX TERMS Eye tracking, pupil detection, iris detection, gaze tracking, image processing.

. INTRODUCTION

Eye tracking technology has emerged as a necessary
component in applications spanning virtual reality (VR),
augmented reality (AR) and mixed reality (MR) —
collectively XR. These technologies rely on the precise
determination of eye pose and gaze direction to create
immersive experiences and optimally render the scene.
Despite its importance, robust and accurate eye tracking
remains a challenge, primarily because of physiological
variability.

A good overview of existing methods can be found in [1],
section ‘Introduction’ and [2], section ‘State of The Art’.

Current state-of-the-art eye tracking methods can be
broadly categorized into three approaches: pupil tracking,
glint-based methods, and neural network-based approaches.
Each has its strengths and weaknesses:

* Methods based on pupil tracking leverage the high
contrast between the pupil and surrounding structures, making
it easy to locate. However, variability in pupil size due to
illumination changes, variations in decentering relative to the
visual axis which is not just an individual characteristic but
also depends on pupil radius, and its positioning behind the

corneal bulge which refracts the light rays complicate accurate
3D localization and gaze estimation.

e Glint-based techniques that utilize reflections from
controlled light sources, can yield reliable 3D eye position
estimates. One of the well-known examples of such an
approach is PCCR (Pupil Center Cornea Reflections) method.
However, these methods are often disrupted by prescription
eyewear glints and optical distortions or environmental stray
lighting, significantly limiting their robustness.

* Neural network-based approaches excel in analyzing
complex eye imagery; however, their computational costs are
prohibitive for real-time applications, and they typically
provide limited information about eye position relative to the
visual axis.

Emerging from these limitations is the concept of iris-based
eye tracking. Unlike pupil, the iris maintains a constant shape
and size across different lighting conditions and individuals,
making it an ideal candidate for accurate gaze estimation.
Additionally, the direct visibility of the iris eliminates the need
for corrective procedures to account for corneal refraction.
However, the challenges of low contrast and partial occlusion
due to eyelids necessitate additional image processing and



modeling techniques to realize the full potential of iris-based
tracking.

The proposed method aims to integrate the strengths of iris-
based tracking with computationally efficient algorithms to
achieve a precise and robust eye pose estimation. Pseudo-polar
rasterization of the iris results in simple procedure of iris pose
and dimensions extraction, which is highly efficient
computationally. This approach avoids reliance on external
glint-producing light sources and high-computational-cost
neural networks. Exploiting the constant geometry of the iris,
the method demonstrates significant advancements in eye
tracking accuracy and reliability, even in real-world conditions
such as users wearing prescription glasses or under variable
illumination.

This paper contributions lie in providing accurate 3D eye
and gaze estimation with low computational cost utilizing iris-
centric eye tracking, enabling new possibilities for eye
tracking in consumer devices and professional applications.

Il. PROPOSED METHOD
A brief outline of a tracking method using the iris as a base
feature is as follows:
* Find pupil location.
+ Estimate the pupil ellipse to roughly locate the iris.
* Refine the location and shape of the iris and find the iris
edge (limbus) via pseudo-polar iris rasterization.
» The refined location and shape of the iris edge are then
utilized to fit the 3D eye model and extract the pose of an
eye (x/y/z position of eyeball center and gaze vector).

A. OVERVIEW

The proposed iris-based eye tracking method is designed to
estimate the 3D eye pose and gaze direction with high
precision and computational efficiency. Unlike traditional
pupil- or glint-based approaches, this method primarily
leverages the geometric constancy of the human iris, offering
advantages in accuracy and independence from lighting
conditions.

The method begins with pupil detection, utilizing its high
contrast to establish a preliminary reference point for further
steps. Once the pupil’s approximate position was determined,
the iris parameters are identified and processed as the primary
feature for pose estimation. By using the iris, which maintains
a fixed size and is directly visible without optical distortion,
the method avoids challenges such as pupil dilation,
decentering, and refraction effects caused by the corneal
bulge.

Processing steps involve pupil ellipse fitting, precise
boundary detection of the iris, and 3D reconstruction of the
eye. This method integrates image processing with geometric
modeling, employing pseudo-polar coordinate
transformations to rasterize the iris. Temporal coherence is
then used to refine estimations across sequential frames,
enhancing robustness and stability.

Finally, the 3D coordinates of the iris and eyeball centers
are calculated using the known camera parameters and
anatomical constraints. These coordinates are transformed into
a head-mounted display (HMD) coordinate system, and the
gaze vector is computed as a line from the eyeball center to the
iris center, further corrected for the angle between the optical
and visual axes. The final outputs of the method are
normalized gaze vector and physical positions of eyeball and
iris centers measured in millimeters.

The key innovations of this method lie in its ability to:

* Reliably detect and utilize the iris as a stable tracking
feature, enabled by introduction of a novel pseudo-polar
iris rasterization.

+ Using the iris as the primary tracking feature makes it
possible to tolerate optical distortions and occlusions
without requiring specialized lighting or neural network-
based processing.

* Maintain computational efficiency suitable for real-time
applications in resource-constrained environments.

B. ROUGH PUPIL POSITION ESTIMATION

The first step of the proposed eye tracking method is to detect
the rough position of the pupil. Although the pupil is not used
as the primary reference for gaze estimation, its high contrast
with the surrounding features makes it an ideal starting point.
This stage is designed to provide a computationally efficient
and noise-resilient estimate of the pupil location.

The input image is first processed to eliminate small,
irrelevant features such as glints, eyelashes, and noise while
preserving the edges of larger, critical features, such as the
pupil and iris. This is achieved using a fast edge-preserving
filter that enhances the robustness of the subsequent steps. The
filter used is a simplified separable bilateral-like
implementation. The mean values of the neighboring pixels
before and after pixel being filtered are used to clamp its value.
Two passes performed: vertical and horizontal. This
preprocessing step ensures the system remains robust under
diverse lighting conditions and variable image qualities.

To segment the pupil from the surrounding regions, the
intensity histogram of the preprocessed image is analyzed by
first computing the cumulative distribution of pixel intensities,
selecting a threshold based on the minimal expected area of
the pupil, and flagging pixels with intensities below this
threshold as potential pupil regions, creating a binary image.
Such adaptive thresholding accounts for variations in lighting
and pupil contrast, enabling the method to remain effective
across various setups.

The threshold image undergoes a two-pass process to refine
the estimation of the pupil position:

First pass: Computing weighted vertical segments:

* Continuous vertical segments of flagged pixels are

identified in the binary image.

* Each segment is assigned a weight proportional to the

gradient value at its boundaries in the original image. The
weight reflects the likelihood of the segment



corresponding to a sharp edge characteristic of the pupil.
Non-pupil areas, which typically lack sharp edges, are
therefore assigned lower weights which minimizes false
positives.

Second pass: Finding maximum-area spot via horizontal
sum:

* The horizontal sums of the weighted vertical segments are

computed.

» The pixel with the maximum sum is selected as the

approximate pupil center.

The pixel identified in the second pass is considered the

rough center of the pupil and serves as the input for subsequent
stages, including iris detection and 3D reconstruction.
The use of lightweight filtering and fast pupil location
detection ensures the system operates in real time. Adaptive
thresholding and gradient-based weighting make the method
resilient to noise and false-positive detections.

C. ELLIPSE FITTING TO THE PUPIL EDGE

Once the rough position of the pupil has been determined, the
next step involves modeling its contour through ellipse fitting.
This process refines the pupil location and geometry, enabling
accurate segmentation and serving as a foundation for
subsequent iris-based calculations. The ellipse fitting
procedure is designed to handle partial occlusions, noise, and
variability in the input data while maintaining computational
efficiency.

Based on the rough center of the pupil, a region of the pupil
area is extracted from the input image. The initial pupil area is
defined as a set of flagged pixels within a rectangular region
centered around the identified rough pupil position, with a size
sufficient to encompass the entire pupil. This is followed by
dynamic expansion. Additional flagged pixels near the initial
area are included if they fall within a predefined distance
threshold. This step accounts for potential additional pupil
segments separated by occlusions or contrast variability. The
dynamic expansion step is repeated until no additional pixels
flagged.

Subsequently, the pupil area undergoes contour extraction
to identify the pupil’s boundary as a set of edge points. The
contour of the area surrounding the center is extracted as a list
of points. The point is considered to belong to a contour if it
has non-flagged immediate neighbor points.

The obtained point list is filtered: points creating inward-
curved edge, which are unlikely to belong to the convex pupil
boundary, are removed from the list. The removal is repeated
multiple times, possibly shrinking the list with each iteration.
This ensures that the contour data reflects the true edge of the
pupil, free from artifacts and noise.

A direct least-squares ellipse fitting algorithm from [3] is
applied to the filtered contour points to model the pupil shape.
To handle partial occlusion, fitting is performed on multiple
combinations of point subsets, selecting the two largest
continuous groups of points. The choice of two groups is
supported by the typical situation in which the pupil is partially

occluded by the top, bottom or both eyelids. The fitting
parameters that minimized the geometric error between the
ellipse and the full list of boundary points are selected.

Output of the procedure: The ellipse’s center, major and
minor axes, and rotation angle are computed from algebraic
ellipse parameters.

The ellipse parameters are checked against the expected
ranges for pupil size and shape and consistency with the
detected pupil center.

D. REFRACTION AND PERSPECTIVE CORRECTION
FOR TRUE PUPIL ELLIPSE PARAMETERS

Accurate pupil position estimation requires correction of the
distortion caused by corneal refraction of light as it passes
through the optical elements of the human eye. Displacements
of features closer to or farther from the imaging plane should
also be performed because of the camera perspective
projection. Without accounting for these effects, the perceived
pupil position and shape deviate from their true physical
parameters, introducing systematic errors into the model.

The human cornea, with a refractive index of approximately
1.3375, causes light entering the eye to bend significantly.
This refraction introduces two effects: (1) distortion of pupil
shape: the apparent shape of the pupil deviates from its true
geometry, appearing as an expanded ellipse in 2D image
projections. (2) Offset of the pupil center projection on the
image plane. The center of the apparent pupil shifts relative to
its true position owing to the bending of light rays.

Refraction and perspective corrections are critical for
mitigating these effects and ensuring that the model accurately
represents the true physical parameters of the eye.

The refracted (observed) ellipse axes ratio (¢.;) from the
true ellipse axes ratio (o) can be derived using equation 3.5a
given in [4]:
acos((pwrr)+5.3)' (1)

Prepr = 0.99 - cos ( 121

For near-to-eye camera, it is also important to account for
perspective projection effects. The camera ray hitting imaging
plane at some point (X, y) is not perpendicular to this plane.
This results in the observed ellipse ratio deviating from the
true ellipse ratio (observed from infinity). The camera ray
angle should be projected onto a plane coinciding with the
minor ellipse axis and perpendicular to the imaging plane to
obtain the angle to the minor ellipse axis O:

6 = atan ( x;+y2 cos ([)’)), 2)

px

where angle between ellipse minor axis and the vector from
the center of the imaging plane towards (x, y) is denoted by f.
Tangent of the camera angle is obtained by dividing the
distance /x? + y? from the imaging plane center, by the
camera focal length expressed in pixels:
fox = W/[2-tan(HFOV /2)], where W is the frame width
and HF OV is the camera horizontal field of view. Multiplying



by cos (B) yields the tangent of the angle between the
projected camera ray and the ellipse minor axis.

Factoring in the correction of the camera perspective
projection, ignoring the 5.3 constant angle (which is
incorporated into the visual axis angle ‘e’ later on) and
neglecting the 0.99 scaler, equation (1) for the corrected ellipse
ratio can be re-written as:

@corr = cos[acos(@repr - cos(0)) - 1.121 — 6. 3)

Multiplying the observed ratio by cos(8) corrects for the
camera ray angle (effectively transforming the image plane to
the equivalent view under perpendicular rays), while
subsequently subtracting 6 rotates the un-refracted angle back
into the image plane. The minor ellipse axis is then
recalculated as the major axis (unchanged) multiplied by the
corrected ratio o

The pupil center shift (A, in millimeters) from the true pupil
ratio due to refraction can be approximated by the following
empirical formula:

Arefrz acos((pcorr) 032 + [acos((pcorr) ) 0-58]2- (4)

The above equation was obtained by performing a ray-
tracing simulation in Zemax optical design software and
fitting a second-order polynomial across different observation
angles. The simulation used a pupil diameter of 4mm and
refraction index of 1.3375.

Furthermore, the pupil is slightly closer to the eyeball center
(approximately 0.3-0.7mm, depending on the subject and
accommodation state [4]) than the iris-sclera boundary. When
captured at an angle, it causes iris and pupil center separation
on the imaging plane. This introduces additional pupil center
shift A, ersp:

Apersp= (Peye - leye) - sin[acos (‘pcorr)]s %)

where /.. and P,,. are distances between eyeball center and
centers of the iris and pupil, respectively.

Individual anatomic decentration of the eye pupil should
also be accounted for.

Note that the above corrections to the detected pupil pose
only improve the central point placement and scaling factors
for the pseudo-polar iris rasterization in the next step and do
not affect the precision of the estimation of the eye pose.

E. IRIS POSE ESTIMATION IN 2D IMAGE SPACE

The iris is a stable anatomical feature with a fixed size and
consistent geometry, making it a reliable reference for
estimating eye pose. The next step of the method is to detect
the iris boundary (limbus) in the 2D image space, which
includes rasterization in the pseudo-polar coordinate space,
boundary detection, and final pose calculation.

To localize the iris, the input image is scanned in pseudo-
polar coordinates, a transformation centered on the corrected
pupil ellipse. The ‘pseudo’ here reflects the fact that the scan
is performed along a nearly elliptic path rather than a circular

path, accounting for pupil ellipse ratio and further adjusted for
the perspective projection of the camera.

RASTERIZATION DETAILS

* The rasterization origin is the pupil center (after refraction
correction).

+ Radial scanning traces concentric ellipses outward from the
pupil edge towards the sclera, providing the initial (X, y)
pixel coordinates in the camera frame.

* The (x, y) coordinate is further corrected for the camera
perspective by first computing the height () of the
rasterized point (height of projection of the iris point in 3D
space to the image plane) above (or below) the imaging
plane:

h=sign-R- [1— (2)2 (6)

where R is the radial distance of the scan (horizontal offset
in the rasterized iris image), r is the distance from the pupil
center to (X, y), a denotes ellipse semi-major axis, and sign
determines whether the point is above or below the imaging
plane and is determined by measuring the angle between
major ellipse axis and the angle of the scan: if it is above 7/2
and below 3m/2: +1; otherwise: -1.

The coordinates are then adjusted according to the height
and camera focal length (derived from the right triangle
formed by the camera ray, height of the iris point /4, and image
plane):

h-x

Ax = @)

h+fox

Algorithm 1 outlines the iris rasterization procedure. A
practical choice of the angular sector is [-/6, 1/6]. The scaling
factor ‘scl’ is computed first; it specifies how the coordinate
vector must be scaled as a function of angle, to transform the
unit circle into the target ellipse. The image plane coordinates
(X, y) are then obtained from the iris center (x0, y0), and each
raster pixel at (r, o) is assigned accordingly. 6 and ¢ are the
ellipse parameters (rotation and axes ratio), and Ax, Ay are
calculated according to the equation (7).

Algorithm 1 Pseudo-polar iris rasterization
Input: CameraFrame
Output: Raster

for r = min_iris to max_iris do
for o= -7/6 to -m/6 do
y < atan2[ sin(a - 0), p-cos(a - 0) ]
sel —/cos(y)2 + (@ - sin(y))?
X < X0 +r - scl - cos(a) - Ax
y < y0+r-scl-sin(a) - Ay
Raster(r - min_iris, o + 7/6) < CameraFrame(x, y)
end for
end for

OUTPUT
Two raster images are generated: one for the sector of the iris
towards the left of the pupil and one towards the right of the



pupil (Fig.1). The raster images encapsulate the brightness
profile that corresponds to the transition at the iris-sclera
boundary (Fig.2).

FIGURE 1. Left and right areas of the iris scans mapped onto the input
frame with detected limbus boundaries drawn (white dots delimit the
start and the end of the rasterized region). Note the ellipse deviation
from the observed pupil position — this represents pupil pose corrected
for the refraction and decenter.

FIGURE 2. Iris scans after the pseudo-polar rasterization (left and right
sectors, respectively).

The boundary between the iris and sclera is identified by
analyzing the brightness gradient in the raster images. A
sudden step (marked with red line in Fig.2) in brightness
indicates the transition from the iris to the sclera (limbus). If
no step above the threshold is found, the iris is considered to
be overly occluded, and the iris pose estimation from this
particular raster scan is discarded.

The iris radius can be computed from the location of the
brightness step in the rasterized iris scans. The dynamic pupil
decenter in the horizontal direction is estimated by computing
the iris radius difference from both left and right iris scans. The
dynamic pupil decenter in the vertical direction is estimated
from the slight deviation of the step profiles from the vertical
direction (slant). From this, the precise center of the iris and its
radius in pixels is determined. Finally, the bow-like shapes of
the rasterized brightness step boundaries can be used to
precisely adjust the remaining iris ellipse parameters
(minor/major axes and rotation angle). This information
provides a precise 2D pose of the iris in the image space.

F. IRIS CENTER LOCATION IN 3D SPACE

Accurately determining the centers of eye features in 3D space
is essential for reliable gaze estimation and 3D eye pose
tracking. The human iris has a near-constant diameter of
approximately 11.6 mm across individuals ([12], section
2.2.3 The Iris’), with minimal variation due to age and
ethnicity. This anatomical feature provides a robust reference
for determining the 3D position of the iris center.

The 2D iris center is projected into 3D space using the

following steps:

* A projection ray is computed from the normalized image
coordinates through the camera's optical center and the
2D iris center. This ray represents the possible locations
of the iris center in 3D space along the line of sight.

» The actual 3D position of the iris center is determined by
intersecting the projection ray with a virtual plane at a
depth consistent with the iris diameter. Scaling by the
known iris diameter ensures that the reconstructed iris
center matches the physical size and position of the iris in
space.

* Temporal Smoothing. When multiple frames are
available, the position of the iris center is averaged over
time using a weighted smoothing function to reduce jitter.

G. EYEBALL CENTER ESTIMATION

The eyeball center serves as a stable reference point, and its
location relative to the iris center allows for precise estimation
of the gaze direction. This section outlines the process for
estimating the eyeball center in both the 2D image and 3D
physical spaces, leveraging geometric modeling and temporal
data integration.

The human iris is anatomically fixed at a consistent distance
of approximately 8 mm (key eye parameters from here on are
derived from [10, Fig.2] if no other reference is provided) from
the center of the eyeball. This constant distance enables the
estimation of the eyeball center based on the 3D position of
the iris.

The key assumptions are as follows:

* The eyeball approximates a perfect sphere with a diameter

of ~24 mm.

* The iris is positioned on the surface of the eyeball.

ESTIMATION IN 2D IMAGE SPACE

When only a single input frame is available, the eyeball center
is estimated in the 2D image space using the geometric
relationship between the iris and eyeball. Using the known
offset of the iris center from the eyeball center, a 2D projection
is made, utilizing the iris ellipse ratio to approximate the
eyeball's center in 2D.

If multiple input frames were already observed, the
individual estimations of the eyeball center in 2D space can be
averaged (with weighting proportional to how confident the
detection was in each particular frame). It is worth noting that
there is no unique center of rotation because of the positioning
and operation of the extra-ocular muscles [4]. The centers of
rotation for the horizontal and vertical movements of the eye
are at different distances from the iris: approximately 12.5mm



and 15.3mm behind the cornea, respectively ([16], section
‘Results’). This fact should be accounted for, and stabilization
should be performed separately for the horizontal and vertical
coordinates of the eyeball center.

ESTIMATION IN 3D SPACE

When the iris center is reconstructed in 3D space, the eyeball
center can be estimated directly through back-projection. The
eyeball center is positioned along the ray extending from the
iris center through a 3D plane tangent to the eyeball surface.
A fixed 8 mm offset is used to accurately locate the center.
When multiple input frames are available, the eyeball center
estimates are averaged over the frames. Confidence weighting
is applied to assign greater importance to frames with high-
quality iris detections. A similar separate per-coordinate
approach as in 2D stabilization is applied owing to the absence
of a unique center of rotation.

H. GAZE VECTOR ESTIMATION

The final step in the eye tracking pipeline is the computation
of the gaze vector, which determines the direction of the user’s
gaze relative to the coordinate system of the HMD or other
reference frames. The gaze vector is derived from the spatial
relationship between the eyeball center and iris center, both of
which have been accurately estimated in the previous steps.

To compute the gaze vector in the context of an HMD, the
3D coordinates of the eyeball and iris centers are transformed
into the device’s coordinate system.

The gaze vector is defined as a directional vector originating
from the eyeball center and pointing toward the iris center.
However, the visual axis of the eye does not coincide with the
optical axis [4]. The horizontal and vertical angular
differences between these axes (angle ) should be determined
during the individual eye-tracking calibration. Alternatively,
typical 5° nasal and 2° upward can be used as a fallback [4].
In summary, gaze vector computation involves the following
steps:

* Compute the direction vector. The direction vector is
computed as the difference between the 3D coordinates
of the iris and eyeball centers given in the device
coordinate system.

* Normalize. The gaze vector is normalized to unit length
for consistency across devices and applications.

* Adjust for the visual axis angle a. The gaze vector is
multiplied by the rotation matrix computed from a.

I. CALIBRATION

The key eye model parameters introduced above, such as
rotation distances, pupil decentration, and the angle a, can
vary slightly across subjects. A method benefits from subject-
specific calibration of these parameters.

A five-point calibration is recommended, with reference
targets positioned at the center, and at locations directly above,
below, left, and right of the center. This configuration enables
estimation of the following eye model parameters:

* Centers of horizontal and vertical eye rotation: derived
from the geometric relationship between the iris center
positions registered on the image plane and the known
angular offsets of the reference targets.

* Pupil parameters (decentration and non-circularity):
obtained by comparing the detected pupil ellipse
parameters with the iris ellipse parameters estimated via
pseudo-polar rasterization.

* Angle a (between the visual and optical axes): computed
by comparing the uncorrected gaze vector obtained
during calibration with the ground-truth gaze direction
toward each reference target.

A reference MATLAB implementation of the complete

calibration procedure is available in [17].

lll. RESULTS

A. 3D EYE POSE RECONSTRUCTION PERFORMANCE

GROUND TRUTH DATASETS

The NVGaze dataset [8], [9] with ground-truth gaze directions
for real-world eye images and full 3D eye pose ground truth
for synthetic eye images was utilized to assess the accuracy
and precision of the proposed method.

The subset used for gaze direction estimation is: “Off-axis
camera view inside VR headset (HTC Vive Pro + PupilLabs
cameras)” with an off-axis camera position. The subset
includes images from subjects with variations in gender,
ethnicity, age, and eye shape. Some of the subjects include
eyeliner, eyeshadow, mascara, eyeglasses, and contact lenses.
For each subject, the data includes varying gaze directions and
pupil sizes.

The NVGaze synthetic dataset was used to assess the 3D
eyeball center position estimation. We had to resort to
synthetic data because this is the only dataset providing the
true ground truth eyeball 3D center position and not the
estimated one [13].

Eye tracking performance assessment (precision and
accuracy) was performed according to the methodology
outlined in the Tobii whitepaper [5] for VR/AR headsets and
wearables.

GAZE ACCURACY AND PRECISION
The gaze estimation accuracy and precision over nine subjects
(the sets with enough frames to perform calibration over) are
summarized in Tables 1 and 2, respectively. According to the
recommendations in [5], precision is measured as the root-
mean-square deviation (RMSD) of the angular differences
between the mean gaze direction and each gaze direction for
each frame. The accuracy is measured as the angular
difference - the offset (in degrees) - between the estimated and
actual directions.

The achieved average accuracy is within 2° to 3° for the
majority of the subjects, with some exceptions.

For example, subject ‘09’ represents a difficult case for the
method. It has high levels of pupil occlusion of over 50% due



to unusually close-to-camera eye placement and the presence
of correction glasses.

The accuracy and precision of the method are comparable
to those of the model-fitting [1] and the PCCR method [14].
Although not a direct comparison, a similar angular gaze error
of 1.68° is reported in [1].

The last column of Table 1 is the ‘generalization error’ as
defined in [8]. L.e., the absolute gaze error between the ground
truth and the estimated values after applying a per-subject
affine calibration transform. The method achieves a
generalization error of 2.35°, which is comparable to the 2.1°-
3.1° error range reported for the neural network-based
approach in [8], evaluated on the same dataset.

TABLE 1
GAZE DIRECTION ACCURACY,
DIFFERENCE FROM GROUND TRUTH IN DEGREES.

Subject FoV degree range from center Average, Gen.
0-10 10-20 20-25  25-30 full FoV  error
01 1.19 1.57 2.3 2.90 1.93 1.40
02 1.46 2.66  3.30 3.51 2.77 1.32
03 1.45 269 257 2.71 2.51 2.30
04 1.33 1.73 2.20 2.78 1.94 1.26
05 1.59 172 2.12 2.77 1.94 1.55
06 1.91 217 2.8 2.68 2.39 1.72
07 243 387 299 4.77 3.64 2.96
08 4.16 357 349 3.89 3.74 2.75
09 6.76 782 649 7.32 7.17 5.89
All 2.48 3.09  3.12 3.70 3.11 2.35
TABLE 2
GAZE DIRECTION PRECISION,
RMSD FROM GROUND TRUTH IN DEGREES.

Subject  FoV degree range from center Average,

0-10 10-20 20-25 25-30 full FoV

01 0.62 0.90 0.98 1.22 0.95

02 0.84 0.97 0.95 1.19 0.99

03 1.05 1.72 2.17 2.36 1.84

04 0.80 0.90 0.87 0.99 0.89

05 1.07 1.22 1.43 1.78 1.33

06 1.19 1.52 1.49 1.36 1.45

07 1.48 1.94 1.66 1.45 1.79

08 1.73 1.66 1.86 1.93 1.77

09 1.83 1.75 1.90 2.57 1.99

All 1.18 1.40 1.48 1.65 1.44

TABLE 3
DATASET PROPERTIES AND ACHIEVED ACCURACY.
Subject % ofiris Eyewear % of frames Accuracy
reflectivity presence  >1/5" pupil
occluded

01 22 N 1 1.93

02 29 N 2 2.77

03 35 N 2 2.51

04 35 Y 0 1.94

05 26 N 0 1.94

06 14 N 0 2.39

07 41 Y 12 3.64

08 26 Y 0 3.74

09 31 Y 25 7.17

Per-subject dataset properties (iris reflectivity, presence of
eyewear, and the percentage of frames in which more than
one-fifth of the pupil area is occluded) together with the
achieved accuracy, are summarized in Table 3. Because of the
limited number of participants, definitive trends cannot be
established; nevertheless, several observations can be made:

* No statistically significant dependence of gaze estimation
precision on the iris lightness was detected. This is likely
due to the lower variability of the iris lightness in the IR
wavelength range compared with the visible range.

» The presence of eyewear is not a significant factor in the
method accuracy (mean error: 2.3° without eyewear vs.
2.8° with eyewear).

» A persistently high level of pupil occlusion leads to a
significant reduction in accuracy.

EYEBALL CENTER 3D POSITION ACCURACY AND
PRECISION

To assess the eye center position estimation precision as well
as the robustness of the method to ‘slippage’ (displacement of
near-eye display over user’s head over time), a synthetic
dataset, generated with NVGaze dataset tools, with
sinusoidally varying position of the eyeball center in 3D space
was used. Both the eye gaze direction and eyeball position
varied simultaneously. The speed of eyeball displacement was
set to 1 mm/s. The achieved eyeball-center estimation
accuracy under such harsh conditions is 0.81 mm.

Fig.3 illustrates the track of the eye gaze. A total of 1600
generated, which amounts to
approximately 27 seconds at 60fps. Fig.4 depicts estimated
eyeball 3D position vs true position during these 27 seconds.

camera frames were
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FIGURE 3. Eye gaze direction coverage (degrees horizontally/vertically
from the center) during 3D eyeball position slippage estimation test.
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FIGURE 4. Estimated eyeball 3D position (slippage) vs true position.
Vertical axis is in mm, horizontal axis — frame number.

B. COMPUTATIONAL EFFICIENCY

The method was implemented in both MATLAB and native C
code [17]. The C version uses single-precision floating-point
arithmetic and runs single-threaded. To enhance
computational efficiency, it leverages compiler-assisted auto-
vectorization (e.g., GCC versions 12 and above).

The majority of the computational cost is incurred during
the initial eye-pupil detection stage because these operations
require a full scan of the input frame. The pseudo-polar iris
scan generation and analysis is quite fast because the region of
the iris is well-defined after initial pupil detection.

In terms of memory footprint, the method requires less than
twice the size of the input frame for the intermediate buffer
storage. For example, with a 640 x 480 input frame, the total
memory allocation is approximately 450 KB.

Overall, the method achieves the following impressive
processing times:

* On a 3GHz 12th generation Intel CPU the single 640 x

480 frame processing takes 350us on a single core.

* On XR-specific Snapdragon XR2, 640 x 480 camera
frame: 465s on a single core. This means that stereo eye
tracking at a 120 Hz refresh rate utilizes under 2% of
the total CPU at less than 0.5ms latency.

Compared with the published PCCR performance figures
[14] (reported at 4-8 ms per frame), the proposed
implementation achieves a lower, sub-millisecond processing
time. However, a well-optimized PCCR implementation
should achieve comparable performance on modern hardware,
given the simple geometric relationship between glint position
and gaze direction [15].

No direct comparison with neural network-based methods
is possible, as those are typically executed on GPUs or other
specialized hardware. Nevertheless, based on the processing-
time reported in [8] (496us to estimate gaze, excluding pupil
localization) and the approximate difference in computational

throughput between a 12"-generation Intel CPU (~16
GFLOPS per core) and an Nvidia Titan V GPU (~12
TFLOPS), the proposed method’s computational
requirements are roughly three orders of magnitude lower.

IV. DISCUSSION

The proposed iris-based eye tracking method demonstrates
significant advancements in the field, paving the way for fast
and robust 3D eye-pose estimation. This section evaluates the
strengths of the method, addresses its limitations, and explores
future directions.

A. GENERAL OBSERVATIONS

The method performs best when using an off-axis camera.
This is due to the fact that a very minor change in the ratio of
the iris ellipse axes when the eye is looking directly into the
camera can lead to a significant variation in the estimated iris
angle. Consequently, such positioning introduces a high level
of noise in the estimation of the eyeball center location. For
on-axis camera locations, PCCR-based methods are generally
more suitable.

Eye tracking systems that use an on-axis, through-the-lens
camera location tend to produce lower accuracy in estimating
the 3D position of the eyeball. This is due to the fact that on-
axis, through-the-lens systems require high focal lengths
(effectively narrow FOV). In such setups, the eye image
change little with variations in the distance between the eye
and camera, increasing the error in distance registration.

Although the method may lag slightly behind PCCR-based
approaches in simple scenarios (e.g., users without eyewear
and under constant illumination), it demonstrates superior
precision and robustness under challenging lighting conditions
where dynamic pupil decentering may occur or when eyewear
is present. Eyewear can generate double reflections and
displace reflection locations, which often confuse PCCR
methods.

B. STRENGTHS OF THE PROPOSED METHOD

LEVERAGING ANATOMICAL CONSTANCY

The fixed geometry and size of the iris, irrespective of
illumination or physiological changes, provide a robust basis
for tracking. Unlike the pupil, which varies in size and
position, the iris offers consistent features for accurate
detection and pose estimation. The partial visibility of the iris
is managed through the selection of appropriate areas for
analysis and temporal data integration, enabling robust
tracking even in scenarios where eyelids or eyelashes occlude
parts of the iris.

ROBUSTNESS ACROSS CONDITIONS

By eliminating the need for glints or specialized lighting, this
method is resilient in diverse environments, making it suitable
for wearable devices. The method remains effective for users
wearing prescription glasses or contact lenses, which is a
common limitation of glint-based approaches.

COMPUTATIONAL EFFICIENCY



The lightweight computational framework ensures that the
system operates in real time, even on resource-constrained
platforms such as standalone HMD devices. Compared to
neural networks-based eye tracking, the proposed method
achieves at least two orders of magnitude reduction in
computing resources.

C. CHALLENGES AND LIMITATIONS

SENSITIVITY TO IRIS CONTRAST VARIABILITY

The method's reliance on iris boundary detection renders it
sensitive to contrast variability among individuals (e.g., lighter
irises). Future studies could incorporate adaptive
preprocessing techniques to dynamically normalize contrast
variations.

PARTIAL IRIS VISIBILITY IN EXTREME CASES

Although the method performs well under moderate
occlusions, extreme cases in which less than 10% of the iris
edge is visible result in reduced accuracy. Similarly, as
detailed in Table 3, severe pupil occlusion produces a
comparable decrease in performance.

CALIBRATION DEPENDENCY

As with any other camera-based eye tracking method, per-
individual eye tracking calibration is required to obtain the
most precise results. However, the method is resilient to the
common problem of slippage and does not require
recalibration upon HMD repositioning on the user’s face.

ASSUMPTION OF FIXED ANATOMICAL DIMENSIONS
The method relies on average anatomical dimensions (e.g.,
11.6 mm iris diameter) for 3D calculations. Individual
deviations from these averages may introduce errors. An
individual calibration procedure mitigates this issue.

D. COMPARISON WITH EXISTING METHODS

PUPIL-BASED APPROACHES

The proposed method avoids the inaccuracies associated with
pupil size variability and decentering, ensuring consistent 3D
position estimation. In contrast, pupil-based methods often
benefit from higher contrast, having an edge under difficult
lighting conditions.

GLINT-BASED TECHNIQUES

Glint-based methods (PCCR) excel in controlled
environments; however, falter under natural lighting and with
optical wear. The iris-based eye tracking method offers a clear
advantage in such scenarios utilizing robust iris edge detection
through pseudo-polar rasterization.

NEURAL NETWORK APPROACHES

Neural network eye-tracking methods can handle complex eye
imagery and adapt to various lighting conditions; however,
they come at a very high computational cost. The iris-based
approach achieves similar or better accuracy levels with
significantly lower processing requirements.

E. FUTURE DIRECTIONS

The following directions of research may further enhance

capabilities of the method:

* Adaptive preprocessing. The dynamic adjustment of
parameters for contrast enhancement and noise reduction
can improve the robustness of pupil area detection across
diverse user groups and environments.

* Enhanced 3D modeling. Integration with advanced eye
models that account for individual anatomical variations
and dynamic behaviors could further refine 3D pose
estimation.

* Better temporal data utilization. Advanced temporal
models could enhance predictions in cases of transient
occlusions or rapid eye movements.

* Binocular tracking. Extending the method to track both
eyes simultaneously, sharing the intermediate data, would
improve precision and enable stereo-based depth
estimation.

V. CONCLUSION

The proposed iris-based eye tracking method offers a precise
approach to eye pose estimation by combining anatomical
insights with computational efficiency. Highly optimized low-
complexity implementation allows for sub-millisecond
processing times, even on low-power mobile CPUs. Precise
eye position tracking enhances the user experience in AR/VR
systems, enabling interaction and dynamic improvements in
optimal scene rendering. The method's compatibility with
near-eye displays and very low computational footprint make
it particularly suitable for such applications.
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